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Fig. 2. Dispersion characteristics of periodic finlines with arbitrarily
located stubs: w; = 0.5 mm, w, = 4.5 mm, s; = 4.83 mm, p =3 mm.

On the other hand, by moving the stubs from s, =2.83 mm
(symmetric case) to s, =4.83 mm (offset case) the resonant
frequency goes down considerably. Another interesting phe-
nomenon is that the resonant frequency can effectively be
changed by adjusting the period length without varying the
dispersion characteristics over the passband range unless the
frequency is in the shadow of resonance.

The resonance phenomenon arises in two cases:

5,—8,=C(2k-1)Ar/4
and/or
wy,—w;—8s,=CQ2k-1)r/4
p=ni/2 (k,n=1,2,3,--+).

The coefficient C is determined by geometric conditions. It can
easily be seen that the passband and stopband will occur period-
ically with the frequency.

V. CoNCLUSION

A new concept called modal spectrum in the propagation
direction has been introduced and successfully applied in the
theoretical analysis. It makes possible the direct use of the
three-dimensional spectral-domain approach in both symmetri-
cally and asymmetrically loaded periodic structures. Several
examples based on this unified algorithm illustrate the slow-wave
phenomenon as well as passband and stopband behavior related
to the cutoff and resonant frequencies. The dielectric losses can
be involved.
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On the Calculation of Conductor Loss on Planar
Transmission Lines Assuming Zero
Strip Thickness

Peter Heitkdmper and Wolfgang Heinrich

Abstract —The incompatibility of the zero-strip-thickness assumption
with conductor loss calculation based on the common perturbation
approach is addressed. Numerical results are shown that demonstrate
the unbounded behaviour of the attenuation constant in this case. This
observation is of specific interest because it applies to various data on
loss given in the literature.

I. THE PROBLEM

Conductor loss on planar transmission lines such as mi-
crostrip, coplanar waveguide, and slotline is usually calculated
by means of a perturbation approach. One starts from an
analysis of the lossless waveguide and then determines the
attenuation from the corresponding surface currents on the
conductors. Assuming the tangential magnetic field to remain
approximately unchanged by the losses, one arrives at the well-
known formula

1)

where P, denotes the dissipated power per unit length, R, the
surface resistance of the conductors, H, the tangential magnetic
field, and C the integration path alohg the contour of the
conductors. Consequently, for the attenuation constant a,
caused by the conductor losses, one has

1 P

a, ===

2 P,

1 .
g=5&ﬂmﬁm

e

with P, being the total power transported in the longitudinal
direction along the waveguide. Clearly, such a procedure makes
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Fig. 1. The structure under co‘nsideration. Edge of a perfectly conduct-
ing strip with zero thickness.

sense only if the fields in the lossy case do not differ significantly
from those of the lossless structure. ‘

Because of its effectiveness, the spectral-domain approach
(SDA) assuming zero strip thickness (¢ =0) is commonly used
when analyzing the lossless waveguide (see, for instance, [1] and
[2] and, more recently, {3]). The fields derived by this analysis
are then used to calculate a, according to (1) and (2). At this
point, one encounters the problem that was pointed out by
Pregla [4]: It is well known that the tangential magnetic field,

H,, at the edge of an infinitely thin and perfectly conducting

strip (see Fig. 1) behaves according to
1
H ~ T (3)
) P
with p denoting the radial distance from the edge. Inserting (3)

into (1) then leads to an integrand ~ p~'. Consequently, the
integral in (1) diverges:

forp—-0

for p — 0. (4)

In practice, however, this problem does not become apparent.
In the numerical calculations, the infinite series representing the
fields above and below the strip are truncated in principle,
because only a finite number M of spectral expansion terms can
be taken into account. This holds even if unbounded basis
functions for the strip currents are employed.

[p-1~dp= Inp with [Inp| >

I1. NuMmERicAL CONSIDERATIONS AND RESULTS

Regarding the common spectral-domain approach, the trun-
cation of the infinite sum corresponds to a minimum spatial
resolution s, in the x direction [2]. Let us consider the geometry
shown in Fig. 1. The fields are expanded in sine and cosine
terms with the separation constant k,, =mw /b, e.g.,

M m
E,~ Y Km-cos(——bl-x).

m=0

&)

Hence one obtains a resolution s, = b /M. Therefore, limiting
the number of eigenfunctions to M means that one can ap-
proach the singularity at x =W merely within this spatial reso-
lution (see [2]). Equally, the calculation of the dissipated power
P, according to (1) is affected: Instead of the integral
x=W =1
1= VA

X

(6)
one evaluates

=W~b/M
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Fig. 2. Attenuation a, due to conductor loss against the number of
spectral terms M (30 pwm wide microstrip on GaAs at 4 GHz). Results
obtained by SDA [5] (crosses) and fitted logarithmic function a =
20.1256 +4.21355-In M (solid line), respectively.

This integral, however, may be solved analytically. One obtains

b
I'~InW+In—
nWw no (8)

and thus

I'sA+B'InM (9)
with 4 and B being constants. As can be seen easily from this
equation, the attenuation «, obtained does rnot converge with
increasing number M of spatial eigenfunctions because In M is
unbounded.

The following numerical results support this observation. In
Fig. 2 the values of «, are drawn as a function of the spectral
truncation index M. The common shielded microstrip structure
was studied [5] using the spectral-domain technique assuming
t =0 and the perturbation approach according to egn. (1) and
(2). Additionally, a logarithmic function 4 + BIn M is depicted,
with the coefficients 4 and B being fitted to the SDA results.
The logarithmic increase of a, with M is confirmed very clearly.

In conclusion, no convergence can be postulated for the
attenuation constant calculated from the lossless case assuming
t = 0, Moreover, an arbitrarily large value of a, can be achieved
by increasing M, where the limit is ultimately determined by the
computer capabilities available. Particularly, there are no reli-
able criteria available for how M should be chosen in order to
obtain realistic results for the case where ¢ > 0. Note that the
logarithmic increase seems to indicate a saturation behaviour,
but as we know from (9) no saturation takes place.

Nevertheless, the results obtained by the approach described
above agree with experiment fairly well in several cases. This
observation may be explained by the relatively slight increase of
the “In” curve and by the poor accuracy when measuring low-loss
planar transmission lines.

" Additionally, one consideration is suitable in explaining the
problem when treating lines of zero strip thickness as lossy ones.
For thin strips of high conductivity one may take, in sequence,
the two limits k — o and ¢ — 0. The conductivity k¥ must be
chosen high enough, however, so that the corresponding skin
depth & is always small compared with the strip thickness ¢.
Hence there exists a lower bound restriction for « that depends
on t. Owing to this interdependence, the order of the two
operations is fixed. It is not possible to interchange the two
limiting procedures as done when setting ¢ =0 first and then
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calculating the losses due to a finite «. In mathematical nota-
tion, this reads

lim[limla(,()«,'--];é lim [ lim ]

t—0 k—wlts0
II1. CoNcCLUSIONS

When calculating the conductor loss of planar transmission
lines by means of perturbation methods, the assumption of zero
strip thickness becomes critical: the surface current integral at
the strip edges does not exist. In the numerical analysis, the
results for the attenuation constant do not converge. For an
increasing number M of spectral eigenfunctions, «, approaches
infinity. However, «. shows a logarithmic dependence on M so
that, in practice, the unbounded behavior may be easily over-
looked or misinterpreted. As a consequence, attenuation results
obtained on the basis of zero-strip-thickness approaches, such as
the common spectral-domain technique, should be handled very
critically and checked against measurements.
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A Closed-Form Spatial Green’s Function for the
Thick Microstrip Substrate

Y. L. Chow, J. J. Yang, D. G. Fang, and G. E. Howard

Abstract —The spatial Green’s function for the open microstrip struc-
ture, especially with a thick substrate, is generally represented by
time-consuming Sommerfeld integrals. In this paper, through the
Sommerfeld identity, a closed-form spatial Green’s function of a few
terms is found from the quasi-dynamic images, the complex images, and
the surface waves, With the numerical integration of the Sommerfeld
integrals thus avoided, this closed-form Green’s function is computa-
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tionally very efficient. Numerical examples show that the closed-form
Green’s function gives less than 1% error for all substrates and source-
to-field distances.

I. INrrODUCTION

In the modeling of microwave integrated circuits (MIC’s) and
microstrip antennas, much effort has to be dedicated to the
computation of Sommerfeld integrals. For a thin microstrip
substrate, say & /A, < 0.05, the quasi-dynamic image model intu-
itively developed by Chow [1] is a good replacement for the
Sommerfeld integrals. For a thick substrate and when the dis-
tance from the source point to the field point is great, however,
this replacement deteriorates because of its neglect of the
surface and leaky wave effects. To accurately model the thick-
substrate microstrip circuits, it appears that the time-consuming
numerical integration of Sommerfeld integrals has to be per-
formed [2], [3]. Although the exact image method was developed
for the microstrip structure [4], where the Sommerfeld integrals
were replaced by certain alternative infinite integrals, it was
shown in [5] that this alternative type of numerical integration is
still rather time-consuming.

In this paper, a closed-form Green’s function for a thick
microstrip substrate is presented. This Green’s function consists
of three parts: G= A+ B+ C, where A represents the contri-
bution from a few quasi-dynamic images dominating in the
near-field region, C represents the contribution from surface
waves dominating in the far-field region of the substrate surface,
and B represents the contribution from the complex images,
which are related to leaky waves and are very important in the
intermediate field region. With this closed form, numerical
integration of Sommerfeld integrals is completely avoided. It
will be shown below numerically that at any frequency, this
closed-form Green’s function gives less than 1% error compared
with the numerical integration of Sommerfeld integrals in the
whole range of substrate surfaces.

II. Tueory

Consider an x-directed electric dipole of unit strength located
above a microstrip substrate, as shown in Fig. 1. The spectral-
domain potentials in the air region can be represented as
follows:

- Mo . .
KX e —1k,(z—2") +R =tk o(z+2") 1
i o TE¢ ] (12)
~ 1
= e_lkzo(l‘l')+ R +R e—jkw(z+z’) 1b
7 4me, j2k20[ (Rre+R,) ] (1b)

where
r%E + g=I2kath

(2a)

Rie=~ T —mh
T+ rige 2

. 2% (1- €,)(1 - e 1*karh)
T (kat o)kt frkzo)(l + rlToEe_]Zk“h)(l— ’ToMe_’Zk“h)

(2b)

e g s NC)
k.t ke kot ek,

kzzo+k§=k§ k221+k§=e,k(2). 4)

In (1), G4* stands for the x component of spectral-domain
vector potential A created by the x-directed electric dipole, and
G, stands for the spectral-domain scalar potential associated
with one charge of the dipole. Rz and R, take into account
the effects of the microstrip substrate. T?xe spectral-domain
Green’s functions of (1) were given in a more compact form by
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